skip to main content


Search for: All records

Creators/Authors contains: "Adames, Ángel F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis.

    Significance Statement

    In comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems. 
    more » « less
  3. Abstract

    A linear two-layer model is used to elucidate the role of prognostic moisture on quasigeostrophic (QG) motions in the presence of a mean thermal wind (). Solutions to the basic equations reveal two instabilities that can explain the growth of moist QG systems. The well-documented baroclinic instability is characterized by growth at the synoptic scale (horizontal scale of ~1000 km) and systems that grow from this instability tilt against the shear. Moisture–vortex instability—an instability that occurs when moisture and lower-tropospheric vorticity exhibit an in-phase component—exists only when moisture is prognostic. The instability is also strongest at the synoptic scale, but systems that grow from it exhibit a vertically stacked structure. When moisture is prognostic andis easterly, baroclinic instability exhibits a pronounced weakening while moisture vortex instability is amplified. The strengthening of moisture–vortex instability at the expense of baroclinic instability is due to the baroclinic () component of the lower-tropospheric flow. In westward-propagating systems, lower-tropospheric westerlies associated with an easterlyadvect anomalous moisture and the associated convection toward the low-level vortex. The advected convection causes the vertical structure of the wave to shift away from one that favors baroclinic instability to one that favors moisture–vortex instability. On the other hand, a westerlyreinforces the phasing between moisture and vorticity necessary for baroclinic instability to occur. Based on these results, it is hypothesized that moisture–vortex instability is an important instability in humid regions of easterlysuch as the South Asian and West African monsoons.

     
    more » « less
  4. Abstract

    A westward‐propagating Rossby‐like wave signal is found to explain a large fraction of the intraseasonal variance in cloud brightness over the Western Hemisphere. A series of diagnostic criteria suggest that this wave is a moisture mode: its moisture anomalies dominate the distribution of moist static energy (MSE) and are in phase with the precipitation anomalies; and the thermodynamic equation obeys the weak temperature gradient approximation. The wave propagates westward due to zonal moisture advection by the mean flow and is maintained by radiative heating and meridional moisture advection. These properties compare favorably with the westward propagating Rossby mode in an equatorial beta‐plane model with prognostic moisture, mean meridional moisture gradient, and mean zonal wind. These results underscore the importance of water vapor in the dynamics of slowly evolving tropical systems, and the limitations of dry shallow water theory that rely on a “reduced equivalent depth” to represent moist dynamics.

     
    more » « less
  5. Abstract

    Analyses of simple models of moist tropical motion systems reveal that the column-mean moist static potential vorticity (MSPV) can explain their propagation and growth. The MSPV is akin to the equivalent PV except it uses moist static energy (MSE) instead of the equivalent potential temperature. Examination of an MSPV budget that is scaled for moist off-equatorial synoptic-scale systems reveals thatα, the ratio between the vertical gradients of latent and dry static energies, describes the relative contribution of dry and moist advective processes to the evolution of MSPV. Horizontal advection of the moist component of MSPV, a process akin to horizontal MSE advection, governs the evolution of synoptic-scale systems in regions of high humidity. On the other hand, horizontal advection of dry PV predominates in a dry atmosphere. Derivation of a “moist static” wave activity density budget reveals thatαalso describes the relative importance of moist and dry processes to wave activity amplification and decay. Linear regression analysis of the MSPV budget in eastern Pacific easterly waves shows that the MSPV anomalies originate over the eastern Caribbean and propagate westward due to dry PV advection. They are amplified by the fluxes of the moist component of MSPV over the Caribbean Sea and over the eastern Pacific from 105° to 130°W, underscoring the importance of moist processes in these waves. On the other hand, dry PV convergence amplifies the waves from 90° to 100°W, likely as a result of the barotropic energy conversions that occur in this region.

     
    more » « less
  6. Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast waves ( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena. 
    more » « less
  7. In this paper, it is shown that westward-propagating monsoon-low-pressure-system-like disturbances in the South Asian monsoon region can be simulated in an idealized moist general circulation model through the addition of a simplified parameterization of land. Land is parameterized as having one-tenth the heat capacity of the surrounding slab ocean, with evaporation limited by a bucket hydrology model. In this model, the prominent topography of the Tibetan Plateau does not appear to be necessary for these storm systems to form or propagate; therefore focus is placed on the simulation with land but no topography. The properties of the simulated storms are elucidated using regression analysis and compared to results from composites of storms from comprehensive GCMs in prior literature and reanalysis. The storms share a similar vertical profile in anomalous Ertel potential vorticity to those in reanalysis. Propagation, however, does not seem to be strongly dictated by beta-drift. Rather, it seems to be more closely consistent with linear moisture vortex instability theory, with the exception of the importance of the vertical advection term in the Ertel potential vorticity budget toward the growth and maintenance of disturbances. The results presented here suggest that a simplified GCM configuration might be able to be used to gain a clearer understanding of the sensitivity of monsoon low pressure systems to changes in the mean state climate. 
    more » « less
  8. Simple process models and complex climate models are remarkably sensitive to the time scale of convective adjustment τ, but this parameter remains poorly constrained and understood. This study uses the linear-range slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure BL. The BLmeasure is a function of layer-averaged moist enthalpy in the boundary layer (150-hPa-thick layer above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa). Sensitivity parameters with units of time quantify the BLresponse to its component perturbations. In moist enthalpy units, BLis more sensitive to temperature than equivalent moisture perturbations. However, column-integrated moist static energy conservation ensures that temperature and moisture are equally altered during the adjustment process. Multiple adjusted states with different temperature–moisture combinations exist; the BLsensitivity parameters govern the relationship between adjusted states, and also combine to yield a time scale of convective adjustment ~2 h. This value is comparable to τ values used in cumulus parameterization closures. Disparities in previously reported values of τ are attributed to the neglect of the temperature contribution to precipitation, and to averaging operations that include data from both precipitating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either averaging operations or neglected environmental influences on precipitation can yield τ estimates longer than the true τ value built into the model. The analysis here culminates in construction of a precipitation closure with both moisture and temperature adjustment ( q– T closure), suitable for use in both linearized and nonlinear, intermediate-complexity models.

     
    more » « less
  9. A new diagnostic framework is developed and applied to ERA-Interim to quantitatively assess vertical velocity (omega) profiles in the wavenumber–frequency domain. Two quantities are defined with the first two EOF–PC pairs of omega profiles in the tropical ocean: a top-heaviness ratio and a tilt ratio. The top-heaviness and tilt ratios are defined, respectively, as the cospectrum and quadrature spectrum of PC1 and PC2 divided by the power spectrum of PC1. They represent how top-heavy an omega profile is at the convective maximum, and how much tilt omega profiles contain in the spatiotemporal evolution of a wave. The top-heaviness ratio reveals that omega profiles become more top-heavy as the time scale (spatial scale) becomes longer (larger). The MJO has the most top-heavy profile while the eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves have the most bottom-heavy profiles. The tilt ratio reveals that the Kelvin, WIG, EIG, and mixed Rossby–gravity (MRG) waves, categorized as convectively coupled gravity waves, have significant tilt in the omega profiles, while the equatorial Rossby (ER) wave and MJO, categorized as slow-moving moisture modes, have less tilt. The gross moist stability (GMS), cloud–radiation feedback, and effective GMS were also computed for each wave. The MJO with the most top-heavy omega profile exhibits high GMS, but has negative effective GMS due to strong cloud–radiation feedbacks. Similarly, the ER wave also exhibits negative effective GMS with a top-heavy omega profile. These results may indicate that top-heavy omega profiles build up more moist static energy via strong cloud–radiation feedbacks, and as a result, are more preferable for the moisture mode instability.

     
    more » « less
  10. Abstract

    While no significant long‐term trend in the propagation speed of the Madden‐Julian Oscillation (MJO) in boreal winter is found during the past decades, pronounced year‐to‐year variability of the MJO phase speed is illustrated by analyzing a century‐long record data set. During the winters when fast MJO propagation is observed, the MJO exhibits a much larger zonal‐scale than that during the winters with slow propagation. A broader extension in MJO circulation effectively induces stronger and broader lower‐tropospheric moistening (drying) to the east (west) of MJO through horizontal moisture advection, prompting a faster MJO phase speed. The larger MJO zonal‐scale during the fast MJO propagation winters is coincident with anomalously increased background sea surface temperatures and precipitable water over both the western Indian Ocean and central/eastern Pacific, reminiscent of an expansion of the Indo‐Pacific warm pool. A fundamental question remains open regarding the key processes that determine the zonal‐scale of MJO organization.

     
    more » « less